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1 RELATEDWORK (CONTINUED)
Template-Based Performance Capture. Our work is also related to a
group of methods that track human surface by deforming a person-
specific or category-specific template or avatar, using either clas-
sical optimization [Habermann et al. 2019; Robertini et al. 2016;
Xiang et al. 2020; Xu et al. 2018] or network prediction [Habermann
et al. 2021, 2020; Jiang et al. 2023; Li et al. 2022]. They achieve bet-
ter temporal coherency than template-free methods that regress
human shape for each frame [Li et al. 2020; Saito et al. 2019, 2020;
Xiu et al. 2023, 2022], but focus on reconstructing human geometry
and rather than modeling dynamic appearance.

2 ABLATION STUDIES ON N-ICP
We conduct ablation studies on our design of the N-ICP algorithm.
The results are shown in Tab. 1. The most naive baseline is to simply
use the point cloud as the input feature, shown on the first row
of the table. On the second row, we add the closest point residual
to the input feature, which provides useful information for sur-
face alignment and enables an iterative update of the deformation
parameters. The following rows suggest that the energy gradient
derived from the residuals can provide more effective guidance, sim-
ilar to its critical role in traditional nonlinear optimization. The last
two rows verify the benefit of iterative parameter update compared
with a one-shot prediction by the network.

3 DETAIL OF COMPARISONWITH
SENSING-BASED BASELINES (SEC. 6.3)

Here, we provide the implementation detail for the sensing-based
baselines for the experiment in Sec. 6.3 in the main paper. We first
fuse the sparse input depth maps into a single Truncated Signed
Distance Field (TSDF) volume [Curless and Levoy 1996; Dong et al.
2022], and then extract from it an explicit mesh representation.
Using the fused geometry, we can then warp the input RGB images
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Table 1: Ablation studies on different types of input for N-
ICP. The evaluation metric is the Mean Squared Error (MSE)
in mm2 between surfaces. P, r and g refer to the point cloud,
residual and gradient defined in Sec. 4.2. 𝑁 denotes the num-
ber of update iterations. When 𝑁 = 1, the network makes
a one-shot prediction. Our full method is shown in the last
row.

Input Type MSE (mm2)

P (𝑁 = 1) 101.19
P, r (𝑁 = 3) 82.72
P, g (𝑁 = 3) 49.60
P, r, g (𝑁 = 1) 72.30
P, r, g (𝑁 = 3, full) 48.47

from the source views to any target view. However, the warped
image is usually imperfect because the fused geometry is often
incomplete and noisy. Therefore, we follow the idea of Lookin-
Good [Martin-Brualla et al. 2018] and train a U-Net to complete the
warped image. This baseline essentially learns to inpaint complete
human appearance from partial input only in the screen space, and
struggles to achieve 3D-aware temporal consistency in the output.
As explained in the main paper, this experiment is not intended to
be a full-scale comparison against state-of-the-art sensing-based
approaches, but to better understand our method in comparison to
a modest baseline along this line of work given similar input.

4 COMPARISONWITH CLOTHING CODEC
AVATARS AND DRESSING AVATARS

We highlight the difference in formluation between our method,
Clothing Codec Avatars (CCA) [Xiang et al. 2021] and Dressing
Avatars (DA) [Xiang et al. 2022] in Tab. 2. In terms of driving
signal, CCA and DA take body and face motion as input, while
our method additionally uses sparse RGB-D views. DA and our
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Table 2: Comparison between Clothing Codec Avatars (CCA)
[Xiang et al. 2021], Dressing Avatars (DA) [Xiang et al. 2022]
and our method.

CCA DA Ours

RGB-D driving input ✓
Loose clothing dynamics ✓ ✓
Physical simulation ✓
Ground truth registration ✓ ✓
Faithful output ✓

Figure 1: A visualization of the deformation graph E used in
the dress example. On the left side, we show the coordinate
frame at each graph node and their connectivity by the red
lines. On the right side, the region of influence by a node
located in the center is shown in red.

method can generate richer and more realistic dynamics for loose
clothing than CCA, but DA requires a proprietary implementation
of real-time cloth simulation. CCA and DA utilize ground truth
clothing registration to train their models, while our method does
not require such pre-processing. Finally, thanks to the additional
RGB-D input and our model design, our output is more faithful to
the actual clothing motion than those two previous methods.

5 IMPLEMENTATION DETAIL
5.1 Clothing Deformation Graph
In Fig. 1, we provide a visual illustration of the deformation graph
E in the inner layer of the clothing deformation model D (Sec. 4
of the main paper) for the dress example. The parameters for the
deformation graph include the rotation and translation for each
node:

𝜽 = {r𝑘 , t𝑘 }𝐾𝑘=1, r𝑘 , t𝑘 ∈ R3, (1)

where r𝑘 is the axis-angle representation of a 3D rotation. We use
a total of 𝐾 = 125 nodes for each example.

5.2 Training Setup
5.2.1 N-ICP. When training the N-ICP module, we adopt a regu-
larization term for deformation graph that compares the difference
in transformation between adjacent nodes:

𝐿DG-Reg =
1

𝐾 (𝐾 − 1)
∑︁

1≤ 𝑗≠𝑘≤𝐾
∥𝑇𝑗m𝑗𝑘 −𝑇𝑘m𝑗𝑘 ∥2, (2)

where 𝑇𝑗 and 𝑇𝑘 denote the SE(3) transformation for the 𝑗−th and
𝑘−th nodes respectively, andm𝑖 𝑗 denotes the middle point between
the rest positions of the 𝑗−th and 𝑘−th nodes. Then the total loss
function for training N-ICP is written as

𝐿N-ICP =
1
𝑁

𝑁∑︁
𝑖=1

𝐿ICP (𝜽 (𝑖 ) , P) + 𝜆DG-Reg𝐿DG-Reg, (3)

where the balancing weight is set to 𝜆DG-Reg = 1 × 10−3. The
trainable parameters in N-ICP are those in PointNet M. The input
and output of the PointNet M are converted to the root body
coordinate of the subject given the tracked body pose 𝝆 to be
invariant to the global orientation and translation. We use the
AdamW optimizer with an initial learning rate of 1 × 10−5.

Initialization. We find it crucial to initialize the parameters in
the last layer of the PointNet with values close to zero, so that
𝜽 (𝑖 ) ≈ 0 for 𝑖 = 1, . . . , 𝑁 at the first training iteration, with 𝜽 (0)

set to 0. In this way, thanks to the two-layer clothing deformation
model (Sec. 4 in the main paper), D(𝜽 (𝑖 ) ) is close enough to the
ICP target to generate meaningful gradient at the beginning of the
training process, and gradually converges to the desired minimum.
In practice, we initialize the last layer of the network by random
sampling from a uniform distribution𝑈 [−𝜀, 𝜀] where 𝜀 = 1 × 10−6.

Discussion on supervision. N-ICP is trained in a self-supervised
manner, because the loss function 𝐿N-ICP does not involve the
“ground truth” deformation parameters. The reasons are two-fold.
First, it takes extra processing time efforts obtain the ground truth.
Second, the problem of estimating reliable “ground truth” deforma-
tion parameters is challenging by itself. Unless the garment under
capture has been specially designed to encode correspondences
in a printed pattern [Halimi et al. 2022], otherwise, the principal
approach is to run offline ICP between the deformation model and
MVS geometry. In this way, the “ground truth” essentially offers
no more information than directly supervising N-ICP by MVS. The
self-supervised formulation, instead, allows solving a global opti-
mization by sharing the information across all frames.

5.2.2 Texel-Conditioned Clothed Avatars. We use the following loss
functions to train the texel-conditioned clothed avatars (Sec. 5 of
the main paper)

𝐿avatars =
∑︁
𝑖

𝜆i𝐿i, 𝑖 ∈ {RGB,mask, reg, part, ID-MRF}. (4)

𝐿RGB and 𝐿mask are the standard 𝐿1 losses for RGB and mask re-
spectively; 𝐿reg is the Laplacian regularization terms for body and
clothing meshes. 𝐿part is similar to 𝐿mask but identify background,
body and clothing in three different categories. Following [Feng
et al. 2022], we use the ID-MRF loss [Wang et al. 2018], a stronger
form of perceptual loss to encourage sharpness for high-frequency
texture in the clothing region. We use 𝜆RGB = 0.2, 𝜆mask = 𝜆part =
500.0, 𝜆reg = 100.0, 𝜆ID-MRF = 1.0. The gradient of loss functions
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defined in the image space (RGB, mask, part and ID-MRF) with
respect to the network parameters are back-propagated through
a differentiable rasterizer. We use the AdamW optimizer with a
learning rate of 1 × 10−3.

Color Augmentation. In order to deal with the domain gap in
illumination and color when the directly applying the avatars to
the novel capture environment (Sec. 6.4 in the main paper), we
apply a random color augmentation to texel-aligned RGB features
F𝐼 using the ‘ColorJitter’ function in TorchVision1 at training time.
Notice that we leave the ground truth images used for supervision
in 𝐿avatars unchanged, so that the network always preserves the
original appearance in the output, despite a different color mode in
the input feature F𝐼 when we direct apply the model to the novel
environment. The output appearance only changes after fine-tuning
with ground truth images in the novel environment.

5.3 Preprocessing and Postprocessing
5.3.1 Input Preprocessing. Our method takes RGB and depth im-
ages as input. When training and testing using data from the dense
capture studio, we run image-based part segmentation and transfer
the result to the MVS mesh by projection and visibility check. This
operation allows us to extract the clothing region. The MVS mesh
may include floating noise, which we remove by checking the mesh
connectivity and setting a threshold on the minimal number of ver-
tices in a connected component. Then, we rasterize the segmented
mesh to RGB views to “simulate” a depth image.

When training and testing in the novel environment, we use the
RGB-D images from calibrated Kinect sensors as input. We also
run image-based part segmentation to extract the clothing regions.
Then we use TSDF fusion [Curless and Levoy 1996] and Marching
Cubes [Lorensen and Cline 1987] to form a mesh from the extracted
depth images, which allows us to perform similar connectivity
check as above to remove noise from the depth sensors.

5.3.2 Temporal Smoothing. Due to the unstructured point cloud
input, the output of N-ICP may have undesirable jittering. We
apply temporal smoothing to the output of N-ICP by taking the
average on the vertex positions in a small temporal window, which
is feasiable because the N-ICP output shares a consistent registered
topology across all the frames. The filtered meshes are then used to
unwrap texel-aligned features and as input to the texel-conditioned
avatars as shown in Fig. 2 of the main paper. We find no need to
apply additional smoothing on the final output of texel-conditioned
avatars if the provided initial tracking is temporally stable and the
floating depth noise has been removed in the preprocessing step.

5.3.3 Collision. To resolve the collision between the body and
clothing layers, which is usually slight in the results, we follow
Clothing Codec Avatars [Xiang et al. 2021] (Sec. 6) to project the
clothing vertices in collision beyond the nearest body points by a
slight margin. More sophisticated ways to handle collision based on
geometry or learning [Tan et al. 2022] may be incorporated, which
we leave for future work.

1https://github.com/pytorch/vision. We use the following parameters: brightness=0.5,
contrast=0.5, saturation=0.5, hue=0.2.

5.4 Network Architecture
5.4.1 N-ICP. N-ICP takes an unstructured point cloud as input, so
we adopt the PointNet++ [Qi et al. 2017] architecture. To specify
the architecture, we reuse the notation of Set Abstraction function
from [Qi et al. 2017]:

SA(𝐾, 𝑟, [𝑙1, . . . , 𝑙𝑑 ]),

where 𝐾 denotes the number of grouping centers, 𝑟 denotes the
radius of the grouping regions, and 𝑙𝑖 denotes the output size of a
fully connected layer in the Multi-Layer Perceptron (MLP). We also
denote a standalone MLP as FC( [𝑙1, . . . , 𝑙𝑑 ]). Then the architecture
of the networkM can be described as

[p, r] → SA(32, 0.1, [16, 16, 32]) → SA(32, 0.2, [64, 64, 128]) →
SA(32, 0.4, [256, 256, 256]) → SA(32, 0.8, [256, 256, 512]) →

MaxPool →
⊕

g → FC( [512, 512, 512, 750]) → Δ𝜽 ,

where p and r denote the point coordinate and residual as defined
in Sec. 4 of the main paper, and

⊕
g denotes the operation to

concatenate the result from the previous step with gradient input
g.

5.4.2 Texel-Conditioned Clothed Avatars. The overall architecture
of the texel-conditioned avatar models is shown in Fig. 2. Given the
texel-aligned features F𝐼 , F𝐷 unwrapped from the initial tracking
results D as input, the encoder produces a feature map that is
spatially aligned with the input. The encoded feature maps are then
decoder into a vertex offset map 𝛿G, from which the offsets are
extracted and then applied on top of the initial tracking to obtain
the output geometry G. The geometry G and the viewpoint v are
used together to compute the view-conditioning, including the
viewing vector expressed in the local Tangent-Bitangent-Normal
(TBN) frame [Xiang et al. 2022] as well as its reflected direction. The
view-dependent U-Net takes in the view conditioning and the view-
independent texture to produce an additive view-dependent offset.
With the final geometry G, we also compute the ambient occlusion,
which is fed into the shadow U-Net to produce a multiplicative
shadow map. The view-dependent texture is then upsampled to 2k
resolution by a upsampling network.

To specify the architecture of the individual networks above, we
define the blocks shown in Fig. 3.

(1) Convolutional encoder consists of the network blocks in the
following table. Following DVA [Remelli et al. 2022], we find that
using a U-Net at 64× 64 resolution instead of a bottleneck structure
helps to preserve the UV-space detail in the output.

Block Output Size (𝐶 × 𝐻 ×𝑊 )

ConvBlock(6, 16, 1) 16 × 512 × 512
ConvDownBlock(16, 32, 1) 32 × 256 × 256
ConvDownBlock(32, 64, 1) 64 × 128 × 128
ConvDownBlock(64, 64, 1) 64 × 64 × 64

U-Net(64, 64, 32) 32 × 64 × 64

(2) View-independent decoder consists of the network blocks in
the following table. Here, the “RepeatChannels” operation repeats
the channels of the input feature for the geometry and texture

https://github.com/pytorch/vision
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Figure 2: The network architecture for the texel-conditioned clothed avatars. It consists of the following five components: (1) a
convolutional encoder that encodes the texel-aligned input, (2) a view-independent decoder that outputs vertex and texture
maps, (3) a view-dependent U-Net that regresses view-dependent variation in the texture, (4) a shadow network that takes in
ambient occlusion and computes a multiplicative shadow map, and (5) an upsampling network that predicts the residual after
increasing the spatial resolution from 1024 to 2048.

branches. The following “ConvUpBlocks” processing them sepa-
rately in different groups. The output is then evenly split into a
vertex offset map and a texture map.

Block Output Size (𝐶 × 𝐻 ×𝑊 )

ConvBlock(32, 32, 1) 32 × 64 × 64
RepeatChannels 64 × 64 × 64

ConvUpBlock(64, 32, 2) 32 × 128 × 128
ConvUpBlock(32, 16, 2) 16 × 256 × 256
ConvUpBlock(16, 8, 2) 8 × 512 × 512
ConvUpBlock(8, 8, 2) 8 × 1024 × 1024
Conv2D(8, 6, 2, k=1) 6 × 1024 × 1024

SplitChannels (2 ×) 3 × 1024 × 1024

(3) View-dependent U-Net is a single block “U-Net(9, 4, 3)” defined
in Fig. 3.

(4) Shadow U-Net is an upsampling operation on the input ambi-
ent occlusion map from 256 resolution to 2048, followed by a block
“U-Net(1, 2, 1)”.

(5) Upsampling network is defined in the following table. Here
the “PixelShuffle(𝑟 )” is an operation that rearranges a tensor from
shape (𝐶 × 𝑟2) × 𝐻 ×𝑊 to 𝐶 × (𝐻 × 𝑟 ) × (𝑊 × 𝑟 ).

Block Output Size (𝐶 × 𝐻 ×𝑊 )

Conv2D(6, 2, 1) 2 × 1024 × 1024
LReLU(0.2) 2 × 1024 × 1024

Conv2D(2, 12, 1) 12 × 1024 × 1024
PixelShuffle(2) 3 × 2048 × 2048

5.5 Training Data Preparation
In this section, we describe how we prepare the assets required to
train the avatars. Given the multi-view images captured by more
than one hundred synchronized cameras, we run 2D keypoint de-
tection, part segmentation, and Multi-View Stereo (MVS). The 2D
body keypoints are triangulated to estimate 3D keypoints. For each
vertex in the MVS output, we aggregate its category label from each
camera view by checking its projection in the image segmentation,
and then perform a majority voting, followed by a Markov Random
Field (MRF) to ensure spatial smoothness. We also use the method
in [Zhang et al. 2017] to estimate an underlying body template
and the body pose for each frame given the 3D keypoints and seg-
mented MVS mesh. The whole process is similar to [Xiang et al.
2021], except that we do not perform clothing registration offline
in the style of ClothCap [Pons-Moll et al. 2017]. Instead, we define
a deformation model D(𝜽 ), and train the N-ICP network to track
the clothing in a self-supervised manner. The clothing template is
created from the segmented clothing region in the MVS mesh in a
rest-pose frame with some manual cleanup and remeshing.
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Tensor 
[C x H x W]

Input/output/feature tensor 
C: channel 
H: height 
W: width

Conv/ConvTranspose2D 
(in, out, group, k=3, s=1)

2D Convolution/Transposed Conv 
in: input channel 

out: output channel 
k: kernel size (3 by default) 

s: stride (1 by default)

LReLU

Leaky ReLU

Up/Downsample 2D 
(H x W)

Bilinear Up/Downsampling 
H: output height 
W: output width

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=2)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group, k=3, s=2)

LReLU

LReLU

Output 
[out x H/2 x W/2]

⊕

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=2)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group)

LReLU

LReLU

Output 
[out x Hx2 x Wx2]

Upsample 2D 
(Hx2 x Wx2)

⊕

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=1)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group, k=3, s=1)

LReLU

LReLU

Output 
[out x H x W]

⊕

ConvDownBlock(in, out, group) ConvUpBlock(in, out, group) ConvBlock(in, out, group)

Conv2D 
(in, F, 1, k=4, s=2)
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Figure 3: Network blocks used in the architecture of texel-aligned avatars.
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