
Modeling Clothing as a Separate Layer for an Animatable Human
Avatar (Supplementary Document)

1 CLOTHED BODY REGISTRATION
In this section, we give a detailed description of our clothed body
registration pipeline (Sec. 4 of the main paper).

1.1 Data Preprocessing
The input to our pipeline is a sequence of RGB images of the sub-
ject captured by a synchronized multi-camera system. The raw
RGB images are used to create a dense 3D reconstruction of the
human surface with a multi-view Patchmatch reconstruction algo-
rithm [Galliani et al. 2015]. One example of reconstructed mesh can
be seen in Fig. 1.
Then, we run body part segmentation for the input images. For

the network architecture we use PointRend [Kirillov et al. 2020],
which takes raw RGB images as input and outputs segmentation
masks of the same size. We also run keypoint detection for body
and hand joints. We use a multi-stage 2D pose estimation network
similar to [Tan et al. 2020] to first detect 2D keypoints from raw
RGB images, then perform multi-view triangulation to obtain 3D
keypoints. Both the segmentation and keypoint detection models
are trained on our in-house datasets consisting of images captured in
the aforementioned multi-camera system. Additionally the 2D pose
estimation model is pretrained on the MS COCO dataset [Lin et al.
2014]. An example of part segmentation and the detected keypoints
can be seen in Fig. 1.

We aim to separately register body and clothing templates to the
above observations, including images, scan, segmentation masks
and keypoints. First, we run single-layer surface registration to fit
to the scan. Then, we segment the single-layer registered meshes
into different body and clothing regions based on the multi-view 2D
segmentation masks. After that, we register the clothing template
to the segmented surface from the single-layer registration with an
explicit boundary-aware loss. Finally, we estimate the underlying
body shape in the inner layer.

1.2 Single-Layer Surface Tracking.
We non-rigidly register the reconstructed meshes with a kinematic
body model, similar to [Zhang et al. 2017] and [Walsman et al. 2017].
We use a kinematic body model with 𝑁 𝑗 = 159 joints, 𝑁𝑣 = 614, 118
vertices and pre-defined LBS skinning weights for all the vertices.
Let W(·, ·) be the LBS function that takes rest-pose vertices and
joint angles as input, and outputs the target-pose vertices. First, we
estimate a personalized model by computing the rest-state shape
V𝑖 ∈ R𝑁𝑣×3 that best fit a collection of manually selected peak poses.
Then, for each frame 𝑖 , we estimate a set of joint angles 𝜽 𝑖 , such that
the skinned mesh V̂𝑖 = W(V𝑖 , 𝜽 𝑖 ) best matches the 3D reconstruc-
tion and detected keypoints introduced in the data preprocessing
step. Finally, we introduce additional per-frame vertex offsets on top
of the skinned kinematic model. We minimize the distance between
the deformed surface and the 3D reconstruction with Laplacian
regularization. At this point, we have obtained registered meshes

representing the human surface as a whole, which provides a prior
for solving the two layer registration problem.

1.3 Clothing Registration
Our clothing registration step produces aligned geometry for the
outer layer, and is similar in spirit to [Pons-Moll et al. 2017]. We
briefly explain the process for completeness and focus on the differ-
ences. The process uses the single-layer surface tracking results and
clothing part segmentation in all camera views as input. In detail, it
consists of the following steps.

Mesh segmentation. Here we aim to label each vertex in the
tracked surface mesh as either ‘outer’ or ‘inner’. Because we only
model the clothing on the upper body in the outer layer, we la-
bel only the vertices in the upper body clothing region as ‘outer’,
and all other regions, including exposed skin and pants, as ‘inner’.
To identify the vertices belonging to the upper body clothing, we
project the mesh to each camera view and check the clothing part
segmentation in the projected pixel location. The majority vote of
segmentation labels among different camera views gives us the ini-
tial vertex segmentation labels. We also filter out vertices visible
in less than three camera views and leave them as undetermined,
which happens frequently in the region below the armpit. Similar to
[Pons-Moll et al. 2017], we then use Markov Random Fields (MRF) to
refine the initial vertex segmentation results. This approach allows
us to fill in the undetermined region and remove noisy labelling
in the initial segmentation results. The output of MRF gives us the
binary inner/outer per-vertex segmentation results.

Clothing template creation. We manually select one frame of
single-layer tracking results, and use the upper clothing region
identified in the mesh segmentation step as our clothing template.
We ask an artist to create a UV map for the template, which is used
to render the clothing and to represent the clothing geometry in the
UV space in the codec avatar (see Fig. 3). Each vertex in the clothing
template is associated with a vertex in the whole-body model V𝑖 ,
and can be skinned using the same kinematic joints and LBS weights.
We also reuse the triangulation in the whole-body model to create
a topology for the clothing template. In the following steps, we will
use this template to register the clothing shape for all other frames
in the sequence.

Deformation initialization. For each frame in the sequence, we
use the mesh segmentation results to identify the target region of
upper clothing. We also initialize a clothing mesh using the template
topology created in the previous step. The goal is to deform the tem-
plate mesh to match the target clothing mesh. In order to provide
better initialization for the deformation, we apply biharmonic defor-
mation fields [Jacobson et al. 2010] to find a per-vertex deformation
that aligns the boundary of the template mesh to the target mesh
boundary while keeping the interior distortion as low as possible.



2 •

Data 
Pre-processing

Single-layer 
Surface Tracking

Mesh 
Segmentation

Clothing 
Registration

Inner-layer 
Shape Estimation

Raw Images Reconstruction Keypoints Segmentation

Clothing 
Template

Registered Clothing

Inner-layer Shape

Single-layer Tracked Mesh Segmented Mesh

Fig. 1. Clothed body registration pipeline.

We observe that this allows the template shape to converge to a
better minimum in the following iterative optimization step.

Boundary-aware non-rigid ICP. Given the deformation initializa-
tion results from the last step, we then run non-rigid Iterative Closest
Points (ICP) algorithm to register the template mesh to the target
clothing mesh, with a special focus on the boundary alignment.
Similar to Section 5.3.1 in [Pons-Moll et al. 2017], we optimize a
weighted sum of the ICP term, the Laplacian term for mesh regular-
ization and a boundary term that penalizes the distance between
the boundary vertices of the template mesh and the target mesh.
After these steps, we obtain a separate mesh registered to the

upper clothing of the subject in the same template topology for
each frame in the sequence, which we later use to train the clothing
branch of our codec avatar.

1.4 Inner-Layer Shape Estimation
In this section, we describe our method to estimate the registered
shape for the inner layer of the codec avatar. The inner layer ge-
ometry consists of two parts: invisible body region covered by the
upper clothing, which we needs to estimate in this section, and
other visible region of the human surface, which can be directly ob-
tained from the single-layer whole-body tracking results in Sec. 1.2.
Our method to estimate the inner-layer shape is similar to that in
[Zhang et al. 2017], which estimates an underlying body shape from
a sequence of 3D clothed human scans.

Inner-layer template sstimation. First, we estimate a cross-frame
inner-layer body template V𝑡 for the subject, similar to Section
4.2 in [Zhang et al. 2017]. We sample 30 frames in the captured
sequence, and fuse the whole-body tracked surface in rest pose V𝑖
for those frames into a single shape VFu. Now we estimate V𝑡 using
the following properties of the fused shape VFu: (1) all the upper
clothing vertices in VFu should lie outside of the inner-layer body

shape V𝑡 ; (2) all the vertices not belonging to the upper clothing
region in VFu should be close to V𝑡 . Based on these observations,
we solve V𝑡 ∈ R𝑁𝑣×3 by the following optimization problem:

min
V𝑡

𝐸𝑡 = 𝑤𝑡
out𝐸

𝑡
out +𝑤𝑡

fit𝐸
𝑡
fit +𝑤

𝑡
vis𝐸

𝑡
vis +𝑤

𝑡
cpl𝐸

𝑡
cpl +𝑤

𝑡
lpl𝐸

𝑡
lpl . (1)

In particular 𝐸𝑡out penalizes any upper clothing vertex of VFu that
lies inside V𝑡 by

𝐸𝑡out =
∑

v𝑗 ∈VFu

𝑠 𝑗 min{0, 𝑑 (v𝑗 ,V𝑡 )}2, (2)

where 𝑑 (·, ·) computes the signed distance from the vertex v𝑗 to the
surface V𝑡 , which takes a positive value if v𝑗 lies outside of V𝑡 and a
negative value if v𝑗 lies inside. 𝑠 𝑗 is the result of mesh segmentation;
it takes the value of 1 if v𝑗 is labeled as upper clothing, and 0 if v𝑗 is
otherwise labeled. To prevent the inner-layer template from being
excessively thin, we also use a ‘fit’ term that penalizes too large
distance between VFu and V𝑡 similar to [Zhang et al. 2017]:

𝐸𝑡fit =
∑

v𝑗 ∈VFu

𝑠 𝑗𝑑 (v𝑗 ,V𝑡 )2, (3)

with the weight of this term smaller than the ‘out’ term𝑤fit < 𝑤out.
Also notice that the vertices of VFu with 𝑠 𝑗 = 0 should be in close
proximity to the visible region of V𝑡 . This constraint is enforced by
following ‘vis’ term:

𝐸𝑡vis =
∑

v𝑗 ∈VFu

(1 − 𝑠 𝑗 )𝑑 (v𝑗 ,V𝑡 )2 . (4)

In addition, to regularize the inner-layer template, we impose a
coupling term and a Laplacian term. Different from [Zhang et al.
2017], the topology of our inner-layer template is incompatible
with the SMPL [Loper et al. 2015] model topology, so we cannot
use the cross-identity body shape space of SMPL for regularization.
Instead, our coupling term 𝐸𝑡cpl enforces similarity between V𝑡 and



Modeling Clothing as a Separate Layer for an Animatable Human Avatar (Supplementary Document) • 3

the whole-body template used in Section 1.2. The Laplacian term
𝐸𝑡lpl penalizes large Laplacian values in the estimated inner-layer
template V𝑡 . In our experiment, we use the following loss weights:
𝑤𝑡
out = 1.0,𝑤𝑡

fit = 0.03,𝑤𝑡
vis = 1.0,𝑤𝑡

cpl = 500.0,𝑤𝑡
lpl = 10000.0.

After running the optimization, we get an inner-layer template in
the rest pose V𝑡 . This template represents the average body shape
under the upper clothing, along with lower body shape with pants
and various exposed skin region such as face, arms and hands. In
the next step, we will use the template as a strong prior to estimate
the frame-specific inner-layer body shape.

Per-frame inner-layer body shape estimation. Given the estimated
inner-layer template in the previous step, now we individually esti-
mate the inner-layer body shape for every frame in the sequence.
For each frame, the estimated inner-layer shape combined with
registered upper clothing mesh (Section 1.3) should resemble the
whole-body surface V̂𝑖 when observed from outside, and allow us
to render the full-body appearance of the person. For this purpose
it is important that the estimated inner-layer shape is completely
under the upper clothing mesh in the upper body region without
intersection between the two layers.

For each frame 𝑖 , we estimate an inner-layer shapeVIn
𝑖

∈ R𝑁𝑣×3 in
the rest pose. We use the same LBS functionW(·, ·) as in Section 1.2
to transform VIn

𝑖
into the target pose V̂In

𝑖
= W(VIn

𝑖
, 𝜽 𝑖 ). We solve

the following optimization problem:

min
VIn
𝑖

𝐸𝐼 = 𝑤 𝐼
out𝐸

𝐼
out +𝑤 𝐼

vis𝐸
𝐼
vis +𝑤

𝐼
cpl𝐸

𝐼
cpl . (5)

Our two-layer formulation requires that the estimated inner-layer
shape stays strictly inside the upper clothing. Therefore, we intro-
duce a minimum distance of 𝜀 = 10 millimeter that any vertex in
the upper clothing should keep away from the inner-layer shape,
and use

𝐸𝐼out =
∑
v𝑗 ∈V̂𝑖

𝑠 𝑗 min{0, 𝑑 (v𝑗 ,W(VIn
𝑖 , 𝜽 𝑖 )) + 𝜀}2, (6)

where, with a slight abuse of notation, 𝑠 𝑗 denotes the segmentation
results for vertex v𝑗 in the mesh V̂𝑖 , with the value of 1 for a vertex
in the upper clothing and 0 otherwise. Similarly, for directly visible
regions in the inner-layer we have

𝐸𝐼vis =
∑
v𝑗 ∈V̂𝑖

(1 − 𝑠 𝑗 )𝑑 (v𝑗 ,W(VIn
𝑖 , 𝜽 𝑖 ))2 . (7)

We also couple the frame-specific rest-pose shape with the cross-
frame inner-layer template to make use of the strong prior encoded
in the template:

𝐸𝐼cpl = ∥VIn
𝑖,𝑒 − V𝑡𝑒 ∥2, (8)

where, similar to Eq. 5 in [Zhang et al. 2017], the subscript 𝑒 denotes
that the coupling is performed on the edges of the two meshes. In
our experiment, we use the following lossweights:𝑤 𝐼

out = 1.0,𝑤 𝐼
vis =

1.0,𝑤 𝐼
cpl = 500.0.

Solving Eq. 5 gives us an estimation of inner-layer shape in a
registered topology for each frame in the sequence. The inner-layer
meshes and the outer-layer meshes obtained in Section 1.3 are both
essential for our two-layer codec avatars.

2 IMPLEMENTATION DETAIL
In this section, we provide implementation detail of our method,
including loss weights and network architecture.

2.1 Loss Weights
The loss weights below are provided with any involved length in
the unit of millimeter (the Laplacian term in Eq. (1-3) and depth
falloff scale in Eq. (4)).

Section 5.1 Body Decoder Eq. (1):

𝜆𝑔 = 0.5, 𝜆𝑙𝑎𝑝 = 50.0, 𝜆𝑡 = 5.0.

Section 5.2 Clothing Network Eq. (2):

𝜆𝑔 = 0.5, 𝜆𝑙𝑎𝑝 = 50.0, 𝜆𝑡 = 5.0, 𝜆𝑘𝑙 = 1.0.

We train the above two networks for 40k iterations with a batch size
of 8, implemented together in group convolution for computation
efficiency.

Section 5.3 Inverse Rendering with Two-layer Representa-
tion Eq. (3):

𝜆𝑖 = 10.0, 𝜆𝑚 = 1000.0, 𝜆𝑣 = 0.001, 𝜆𝑙𝑎𝑝 = 100.0.

We train the network for 100k iterations with a batch size of 8.
Eq. (4):

𝑐 = 10.0.
For all the networks above, we use the AdamW optimizer with

parameters 𝛼 = 1 × 10−3 (learning rate), 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =

1 × 10−8, except when we fine-tune the anchor VAE to individual
chunks for photometric texture alignment (Section 5.4), where we
use 𝛼 = 1 × 10−4.

2.2 Network Architecture
2.2.1 Body and Clothing Networks. We describe the network archi-
tecture for our body and clothing in Fig. 4, corresponding to the
networks in Fig. 4 of the main paper. The detail of each module,
including encoder, decoder and shadow network, is shown in Fig. 3,
and each element in Fig. 3 is further defined in Fig. 2.
Geometry. Following previous work [Bagautdinov et al. 2021],

the input and output geometry in both networks are defined in the
unposed space (converted from the world space by inverse LBS with
known joint angles) and with mean value subtracted, represented
by a 3-channel UV map.
Texture. We also follow the practice in previous work [Bagaut-

dinov et al. 2021] to separate the final view-conditioned texture
into three components: a view-independent texture across different
views, an additive residual texture to encode per-view variation, as
well as a multiplicative shadow map to encoder long-range shad-
owing effects. The shadow map is predicted by a shadow network
conditioned on an ambient occlusion map that is computed from the
reconstructed body and clothing geometry. This separation is only
formulated as an inductive bias in the network, and supervision is
only applied to the final view-dependent texture.
Input conditioning. As explained in Sec. 5 of the main paper, our

body and clothing decoders take in different input conditioning.
• The pose encoding and face encoding are computed by tiling
the pose vector and facial keypoint vector respectively along



4 •

Tensor 
[C x H x W]

Input/output/feature tensor 
C: channel 
H: height 
W: width

Conv2D 
(in, out, group, k=3, s=1)

2D Convolution 
in: input channel 

out: output channel 
k: kernel size (3 by default) 

s: stride (1 by default)

ConvDownBlock 
(in, out, group)

LReLU

Leaky ReLU

Up/Downsample 2D 
(H x W)

Bilinear Up/Downsampling 
H: output height 
W: output width

ConvUpBlock 
(in, out, group) is defined asis defined as

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=2)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group, k=3, s=2)

LReLU

LReLU

Output 
[out x H/2 x W/2]

⊕

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=2)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group)

LReLU

LReLU

Output 
[out x Hx2 x Wx2]

Upsample 2D 
(Hx2 x Wx2)

⊕

ConvBlock 
(in, out, group) is defined as

Input 
[in x H x W]

Conv2D 
(in, out, group, k=1, s=1)

Conv2D 
(in, in, group)

Conv2D 
(in, out, group, k=3, s=1)

LReLU

LReLU

Output 
[out x H x W]

⊕

Fig. 2. Definition of network elements that will be used in the following figures for network architecture. We represent data tensor in green, convolution
operations in blue, leaky ReLU in yellow, and up-sampling/down-sampling in red. We also define three types of residual convolution blocks with different
up-sampling or down-sampling effects.

the spatial UV dimension to a 32 × 32 feature map. The fea-
ture map is then processed by a spatially localized masking
operation and then a 2D residual convolution block. For the
detail of this process, see Section 3.3 of [Bagautdinov et al.
2021]).

• The view conditioning is computed as the ray direction from
the camera center to the reconstructed geometry in each loca-
tion of the UV map, with the global orientation factored out.
This 3-dim ray direction is then converted to a 64-dim fea-
ture independently for each UV location by a fully-connected
layer and non-linearity (Leaky ReLU).

• The latent encoding is directly up-sampled from the latent
code predicted by the encoder to keep the spatial dimension
consistent with other input conditioning.

2.2.2 Temporal Convolution Network for Clothing Animation. For
the temporal convolution network used in Sec. 6 of the main paper,
we use a total of 6 ‘ConvDownBlock’s defined in Fig. 2, only with
the ‘Conv2D’ operation replaced by ‘Conv1D’ along the temporal
dimension. The input channel dimension is 94 corresponding to
the pose vector, and the channel number after each 1D convolution
block is 128, 128, 256, 512, 1024, 8192 respectively. The final output
is reshaped to match the dimension of the clothing VAE latent code.

3 SUPPLEMENTARY VIDEO: ABLATION ANALYSIS
In the supplementary video, we show a comparison of animation
results using different lengths of temporal window 𝐿 as input to our
TCN (Sec. 6), including 1, 3, 8, 15, 30, 60.

We observe that using a small temporal window length (for exam-
ple 𝐿 = 1, 3, 8) leads to unnatural jittering in the animation output.
Our analysis is that, as in the situation with [Bagautdinov et al.
2021], similar poses (or short pose sequences) in the training set
may correspond to drastically different clothing states, and the net-
work can overfit to the data by trying to distinguish between the
nuances in pose variation, thus predicting highly different clothing
states in consecutive frames. By contrast, using a larger temporal
window length allows the network to take a longer history informa-
tion of body motion into consideration, and thus becomes less prone
to the overfitting problem. In addition, the temporal convolution
architecture itself tends to predict temporally smooth output, and
can also help avoid the jittering. Obviously, using a too long tem-
poral window is also bad for model efficiency. Thus we empirically
choose 𝐿 = 15 or 30 in our model configuration.

REFERENCES
Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabian Prada, Takaaki Shiratori, Shih-

En Wei, Weipeng Xu, Yaser Sheikh, and Jason Saragih. 2021. Driving-signal aware
full-body avatars. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–17.

Silvano Galliani, Katrin Lasinger, and Konrad Schindler. 2015. Massively Parallel Multi-
view Stereopsis by Surface Normal Diffusion. In Proceedings of the IEEE International



Modeling Clothing as a Separate Layer for an Animatable Human Avatar (Supplementary Document) • 5

Unposed Geometry (UV) 
[3 x 1024 x 1024]

Mean-View Texture 
[3 x 1024 x 1024]

ConvDownBlock 
(6, 8, 2)

ConvDownBlock 
(8, 16, 2)

ConvDownBlock 
(16, 32, 2)

ConvDownBlock 
(32, 32, 2)

ConvDownBlock 
(32, 64, 2)

ConvDownBlock 
(64, 64, 2)

[8 x 512 x 512]

[16 x 256 x 256]

[32 x 128 x 128]

[32 x 64 x 64]

[64 x 32 x 32]

[64 x 16 x 16]

ConvDownBlock 
(64, 128, 2)

[128 x 8 x 8]

Conv2D 
(128, 128, 2)

Conv2D 
(128, 128, 2)

Mu 
[128 x 8 x 8]

Std 
[128 x 8 x 8]

Unit Gaussian Noise 
[128 x 8 x 8]

Latent Code 
[128 x 8 x 8]

Input conditioning 
[N x 32 x 32]

ConvUpBlock 
(128, 64, 2)

[64 x 64 x 64]

ConvUpBlock 
(64, 32, 2)

[32 x 128 x 128]

ConvUpBlock 
(32, 16, 2)

[16 x 256 x 256]

ConvUpBlock 
(16, 8, 2)

[8 x 512 x 512]

ConvUpBlock 
(8, 8, 2)

[8 x 1024 x 1024]

Conv2D 
(8, 6, 2)

Unposed Geometry (UV) 
[3 x 2048 x 2048]

Mean-View Texture 
[3 x 2048 x 2048]

Input conditioning 
[N x 32 x 32]

[64 x 32 x 32]

ConvUpBlock 
(64, 32, 1)

[32 x 64 x 64]

ConvUpBlock 
(32, 16, 1)

[32 x 128 x 128]

ConvUpBlock 
(16, 8, 1)

[16 x 256 x 256]

ConvUpBlock 
(8, 8, 1)

[8 x 512 x 512]

ConvUpBlock 
(8, 8, 1)

[8 x 1024 x 1024]

Conv2D 
(8, 3, 1)

Residual Texture 
[3 x 2048 x 2048]

Encoder View-Independent 
Decoder

View-Dependent 
Decoder

ConvUpBlock 
(8, 8, 2)

[8 x 2048 x 2048]

ConvUpBlock 
(8, 8, 1)

[8 x 2048 x 2048]

⊕ ⊕

ConvBlock 
(N, 64, 1) ConvBlock 

(N, 64, 1)

ConvBlock 
(N, 64, 1)

[64 x 32 x 32]
[64 x 32 x 32]

Ambient Occlusion Map 
[1 x 256 x 256]

Shadow Network

Conv2D 
(1, 32, 1)

LReLU

[32 x 256 x 256]

Downsample 2D 
(128 x 128)

Conv2D 
(32, 32, 1)

LReLU

[32 x 128 x 128]

Downsample 2D 
(64 x 64)

Conv2D 
(32, 32, 1)

LReLU

[32 x 64 x 64]

Downsample 2D 
(32 x 32)

Conv2D 
(32, 32, 1)

LReLU

[32 x 32 x 32]

Conv2D 
(32, 32, 1)

LReLU

Upsample 2D 
(64 x 64)

[64 x 64 x 64]

Conv2D 
(64, 32, 1)

LReLU

Upsample 2D 
(128 x 128)

[64 x 128 x 128]

Conv2D 
(64, 32, 1)

LReLU

Upsample 2D 
(256 x 256)

[64 x 256 x 256]

Conv2D 
(64, 32, 1)

LReLU

Conv2D 
(32, 1, 1)

Low-Res Shadow Map 
[1 x 256 x 256]

[·]

[·]

[·]

[·] denotes the concatenation of two tensors 
along the channel dimension.

Upsample 2D 
(256 x 256)

Shadow Map 
[1 x 2048 x 2048]

Fig. 3. Architecture of the encoder, decoder, and shadow network used in the body and clothing networks (Fig. 4). The encoder takes as input mean-view
texture and unposed geometry embedded in the UV map, and outputs a latent code. The decoder consists of the two parts: the view-independent part which
outputs the mean-view texture as well as geometry UV map, and the view-dependent part which outputs the per-view residual texture to be added to the
mean-view texture. The shadow network has a U-Net [Ronneberger et al. 2015] architecture. It converts the Ambient Occlusion (AO) map into a shadow map.

Conference on Computer Vision (ICCV).
Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements

for variational surface modeling. In Computer Graphics Forum, Vol. 29. Wiley Online
Library, 1565–1574.

Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. 2020. PointRend: Image
Segmentation As Rendering. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in
context. In European Conference on Computer Vision. Springer, 740–755.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J
Black. 2015. SMPL: A skinned multi-person linear model. ACM Transactions on
Graphics (TOG) 34, 6 (2015), 1–16.

Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. 2017. ClothCap:
Seamless 4D clothing capture and retargeting. ACM Transactions on Graphics (TOG)
36, 4 (2017), 1–15.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and Efficient
Object Detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Aaron Walsman, Weilin Wan, Tanner Schmidt, and Dieter Fox. 2017. Dynamic high
resolution deformable articulated tracking. In 2017 International Conference on 3D
Vision (3DV). IEEE, 38–47.

Chao Zhang, Sergi Pujades, Michael J. Black, and Gerard Pons-Moll. 2017. Detailed,
Accurate, Human Shape Estimation From Clothed 3D Scan Sequences. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).



6 •

Body Network

Pose encoding 
[94 x 32 x 32]
Face encoding 
[32 x 32 x 32]

View conditioning 
[64 x 32 x 32]

Clothing Network

Vi
ew

-
In

de
pe

nd
en

t 
De

co
de

r

Vi
ew

-
De

pe
nd

en
t 

De
co

de
r

[·]

Body Geometry (UV) 
[3 x 2048 x 2048]

Body Mean-View Texture 
[3 x 2048 x 2048]

Body Residual Texture 
[3 x 2048 x 2048]

Body Ambient Occlusion 
[1 x 256 x 256]

Sh
ad

ow
 

Ne
tw

or
k

Body Shadow Map 
[1 x 2048 x 2048]

Body View Texture 
[3 x 2048 x 2048]

⊕ ⊕

Latent Code 
[128 x 8 x 8]

View Conditioning 
[64 x 32 x 32]

Vi
ew

-
In

de
pe

nd
en

t 
De

co
de

r

Vi
ew

-
De

pe
nd

en
t 

De
co

de
r

[·]

Clothing Geometry (UV) 
[3 x 2048 x 2048]

Clothing Mean Texture 
[3 x 2048 x 2048]

Clothing Residual Texture 
[3 x 2048 x 2048]

Clothing AO 
[1 x 256 x 256]

Sh
ad

ow
 

Ne
tw

or
k

Clothing Shadow Map 
[1 x 2048 x 2048]

Clothing View Texture 
[3 x 2048 x 2048]

⊕ ⊕

En
co

de
rClothing Mean Texture 

[3 x 2048 x 2048]
Clothing Geometry 
[3 x 2048 x 2048]

Upsample 2D 
(32 x 32)

Latent Conditioning 
[128 x 32 x 32]

Fig. 4. The architecture of body and clothing networks. Notice that LBS and inverse LBS are omitted in the figure. All geometry involved is in unposed space,
with mean value subtracted. The Ambient Occlusion (AO) for body and clothing is computed from the reconstructed geometry of body and clothing together.


	1 Clothed Body Registration
	1.1 Data Preprocessing
	1.2 Single-Layer Surface Tracking.
	1.3 Clothing Registration
	1.4 Inner-Layer Shape Estimation

	2 Implementation Detail
	2.1 Loss Weights
	2.2 Network Architecture

	3 Supplementary Video: Ablation Analysis
	References

